www.chemistryhk.com

AS EQUATIONS - Unit 1

Alkanes - with O₂

Complete combustion $CH_4 + 2 O_2 \rightarrow CO_2 + 2H_2O$ Incomplete combustion $CH_4 + 1.5O_2 \rightarrow CO + 2H_2O$

Alkanes - with Cl₂, UV

 $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$

Mechanism = Photochemical free radical substitution.

Alkanes – improving the quality of fuels

Catalytic Cracking $C_{10}H_{22} \rightarrow C_5H_{12} + C_5H_{10}$ Conditions – Heat (600°C), Al₂O₃

Isomerisation

Conditions - Heat, Pt

Reformation

$$+ H_2$$

Conditions - Heat, Pt

Alkenes – with H₂

 $H_2C=CH_2 + H_2 \rightarrow CH_3CH_3$ Conditions - Heat, **Ni**

Alkenes – with Br₂ / hexane

CH₃CH=CH₂ + Br₂ → CH₃CHBrCH₂Br

Colour change (orange to colourless)

Mechanism = Electrophilic Addition

Alkenes – with Bromine water

 $CH_3CH=CH_2 + Br_2 / H_2O \rightarrow CH_3CHOHCH_2Br$

Colour change (orange to colourless)

Mechanism = Electrophilic Addition

Alkenes – with HBr/dry/gas

CH₃CH=CH₂ + HBr → CH₃CH₂BrCH₃

Major product

Mechanism = Electrophilic Addition

Explanation for major product = Secondary carbocationic intermediate is more stable than primary.

Alkenes - with KMnO₄ / H₂SO₄

CH₃CH=CH₂ + [O] → CH₃CHOHCH₂OH

Colour change (purple to colourless – H2SO4)

Alkenes – Polymerisation