www.chemistryhk.com ## **AS EQUATIONS - Unit 1** Alkanes - with O₂ Complete combustion $CH_4 + 2 O_2 \rightarrow CO_2 + 2H_2O$ Incomplete combustion $CH_4 + 1.5O_2 \rightarrow CO + 2H_2O$ Alkanes - with Cl₂, UV $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$ Mechanism = Photochemical free radical substitution. Alkanes – improving the quality of fuels Catalytic Cracking $C_{10}H_{22} \rightarrow C_5H_{12} + C_5H_{10}$ Conditions – Heat (600°C), Al₂O₃ Isomerisation Conditions - Heat, Pt Reformation $$+ H_2$$ Conditions - Heat, Pt Alkenes – with H₂ $H_2C=CH_2 + H_2 \rightarrow CH_3CH_3$ Conditions - Heat, **Ni** Alkenes – with Br₂ / hexane CH₃CH=CH₂ + Br₂ → CH₃CHBrCH₂Br Colour change (orange to colourless) Mechanism = Electrophilic Addition Alkenes – with Bromine water $CH_3CH=CH_2 + Br_2 / H_2O \rightarrow CH_3CHOHCH_2Br$ Colour change (orange to colourless) Mechanism = Electrophilic Addition Alkenes – with HBr/dry/gas CH₃CH=CH₂ + HBr → CH₃CH₂BrCH₃ Major product Mechanism = Electrophilic Addition Explanation for major product = Secondary carbocationic intermediate is more stable than primary. Alkenes - with KMnO₄ / H₂SO₄ CH₃CH=CH₂ + [O] → CH₃CHOHCH₂OH Colour change (purple to colourless – H2SO4) **Alkenes – Polymerisation**